5 research outputs found

    Deep learning to find colorectal polyps in colonoscopy: A systematic literature review

    Get PDF
    Colorectal cancer has a great incidence rate worldwide, but its early detection significantly increases the survival rate. Colonoscopy is the gold standard procedure for diagnosis and removal of colorectal lesions with potential to evolve into cancer and computer-aided detection systems can help gastroenterologists to increase the adenoma detection rate, one of the main indicators for colonoscopy quality and predictor for colorectal cancer prevention. The recent success of deep learning approaches in computer vision has also reached this field and has boosted the number of proposed methods for polyp detection, localization and segmentation. Through a systematic search, 35 works have been retrieved. The current systematic review provides an analysis of these methods, stating advantages and disadvantages for the different categories used; comments seven publicly available datasets of colonoscopy images; analyses the metrics used for reporting and identifies future challenges and recommendations. Convolutional neural networks are the most used architecture together with an important presence of data augmentation strategies, mainly based on image transformations and the use of patches. End-to-end methods are preferred over hybrid methods, with a rising tendency. As for detection and localization tasks, the most used metric for reporting is the recall, while Intersection over Union is highly used in segmentation. One of the major concerns is the difficulty for a fair comparison and reproducibility of methods. Even despite the organization of challenges, there is still a need for a common validation framework based on a large, annotated and publicly available database, which also includes the most convenient metrics to report results. Finally, it is also important to highlight that efforts should be focused in the future on proving the clinical value of the deep learning based methods, by increasing the adenoma detection rate.This work was partially supported by PICCOLO project. This project has received funding from the European Union's Horizon2020 Research and Innovation Programme under grant agreement No. 732111. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein. The authors would also like to thank Dr. Federico Soria for his support on this manuscript and Dr. José Carlos Marín, from Hospital 12 de Octubre, and Dr. Ángel Calderón and Dr. Francisco Polo, from Hospital de Basurto, for the images in Fig. 4

    Medical needs related to the endoscopic technology and colonoscopy for colorectal cancer diagnosis

    Get PDF
    Background. The high incidence and mortality rate of colorectal cancer require new technologies to improve its early diagnosis. This study aims at extracting the medical needs related to the endoscopic technology and the colonoscopy procedure currently used for colorectal cancer diagnosis, essential for designing these demanded technologies. Methods. Semi-structured interviews and an online survey were used. Results. Six endoscopists were interviewed and 103 were surveyed, obtaining the demanded needs that can be divided into: a) clinical needs, for better polyp detection and classification (especially flat polyps), location, size, margins and penetration depth; b) computer-aided diagnosis (CAD) system needs, for additional visual information supporting polyp characterization and diagnosis; and c) operational/physical needs, related to limitations of image quality, colon lighting, flexibility of the endoscope tip, and even poor bowel preparation.This work is part of the PICCOLO project, which has received funding from the European Union’s Horizon 2020 research and innovation Programme under grant agreement No. 732111. GR18199, funded by “Consejería de Economía, Ciencia y Agenda Digital, Junta de Extremadura” and co-funded by European Union (ERDF “A way to make Europe”). The funding bodies did not play any roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript

    Deep learning and big data in healthcare: a double review for critical beginners

    Full text link
    In the last few years, there has been a growing expectation created about the analysis of large amounts of data often available in organizations, which has been both scrutinized by the academic world and successfully exploited by industry. Nowadays, two of the most common terms heard in scientific circles are Big Data and Deep Learning. In this double review, we aim to shed some light on the current state of these different, yet somehow related branches of Data Science, in order to understand the current state and future evolution within the healthcare area. We start by giving a simple description of the technical elements of Big Data technologies, as well as an overview of the elements of Deep Learning techniques, according to their usual description in scientific literature. Then, we pay attention to the application fields that can be said to have delivered relevant real-world success stories, with emphasis on examples from large technology companies and financial institutions, among others. The academic effort that has been put into bringing these technologies to the healthcare sector are then summarized and analyzed from a twofold view as follows: first, the landscape of application examples is globally scrutinized according to the varying nature of medical data, including the data forms in electronic health recordings, medical time signals, and medical images; second, a specific application field is given special attention, in particular the electrocardiographic signal analysis, where a number of works have been published in the last two years. A set of toy application examples are provided with the publicly-available MIMIC dataset, aiming to help the beginners start with some principled, basic, and structured material and available code. Critical discussion is provided for current and forthcoming challenges on the use of both sets of techniques in our future healthcare

    Text Analytics and Mixed Feature Extraction in Ovarian Cancer Clinical and Genetic Data

    No full text
    Developments of richer integrative analysis methods for oncological studies are needed for efficiently leveraging the amount of clinical and genetic data available to provide the clinicians with better information. However, analyses of this nature often require mixing data of different types, which are not immediate to address jointly with classical methods. In this work, our aim is to find relationships between clinical and genetic features of different types (metric, categorical, and text) and the ovarian cancer (OC) disease progression. To this end, we first propose a univariate statistical method for text type applying bootstrap resampling to Bag of Words and Latent Dirichlet Allocation in order to include as features the free-text fields of the health recordings. Secondly, we extend bootstrap resampling for metric and categorical feature extraction with Principal Component Analysis (PCA) and Multiple Correspondence Analysis (MCA), respectively. We subsequently formulate a novel and integrative method for jointly considering metric, categorical, and text features. Results obtained in text analysis indicate individual differences in some words between two OC patients groups categorised according to their sensitivity to platinum drugs. These results indicate separability between both groups for text features. Also, regarding the multivariate analysis, clinical data results showed separability patterns for the three methods analysed according to the platinum-sensitivity degree. The use of these analytical tools in our OC cohort has allowed us to demonstrate their strengths by confirming the predictive and prognostic role of widely-known clinical and genetic variables (BRCA status, value of adjuvant therapy and optimal resection, or family history) and demonstrating significant associations in other variables whose role in OC development has been studied to a lesser extent (such as PMS1, GPC3, and SLX4 genes). These results highlight the value of implementing these approaches for the identification of novel biomarkers in the context of OC
    corecore